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Inviscid, laminar and turbulent opposed �ows
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SUMMARY

This paper attempts to reproduce numerically previous experimental �ndings with opposed �ows and
extends their range to quantify the e�ects of upstream pipes and nozzles with inviscid, laminar and
turbulent �ows. The choice of conservation equations, boundary conditions, algorithms for their solution,
the degree of grid dependence, numerical di�usion and the validity of numerical approximations are
justi�ed with supporting calculations where necessary. The results of all calculations on the stagnation
plane show maximum strain rates close to the annular exit from the nozzles and pipes for lower
separations and it can be expected that corresponding reacting �ows will tend to extinguish in this
region with the extinction moving towards the axis. With laminar �ows, the maximum strain rate
increased with Reynolds number and the maximum values were generally greater than with inviscid
�ows and smaller than with turbulent �ows. With large separations, the strain rates varied less and this
explains some results with reacting �ows where the extinction appeared to begin on the axis.

The turbulent-�ow calculations allowed comparison of three common variants of a two-equation
�rst-moment closure. They provided reasonable and useful indications of strain rates but none correctly
represented the rms of velocity �uctuations on the axis and close to the stagnation plane. As expected,
those designed to deal with this problem produced results in better agreement with experiment but were
still imperfect. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Opposed laminar and turbulent �ows have been used to determine strain rates at extinction,
for example References [1–6], and also provide a basis for the development of kinetic models
of combustion, as by Hamins et al. [7], Fallon et al. [8], Gao et al. [9], Frouzakis et al.
[10], Massot et al. [11], Sung et al. [12], Lahjaily et al. [13] and Zegers et al. [14]. Accurate
determination of the isothermal �ow �eld, including an assessment of turbulence modes, is
essential prior to the added complexities of combustion and extinction and this motivated
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many past contributions, for example numerical work with k–� models including those in
References [15–21] while some of the more recent work with Reynolds stress models includes
the contributions of Champion and Libby [22, 23], Lindstedt and V�aos [24]. The present
calculations were guided in part by the previous work but mainly by the experiments of
Korusoy and Whitelaw [25, 26]. The following three paragraphs review past work in inviscid,
laminar and turbulent opposed �ows followed by a consideration of the turbulence models
used and the added complexity of combustion.
Early solutions of inviscid-�ow equations, as by Leclerc [27] and included in the reviews

of Spalding [28] and Tsuji [29], were based on the idealization of an in�nite potential �ow,
where the magnitude of the axial component of velocity increased linearly with axial distance
from the stagnation plane and the radial component increased linearly with radial distance
from the axis of symmetry. The in�nite potential �ow �eld could be characterized by a single
strain rate, given by the axial gradient of axial velocity at the stagnation point, and had the
advantage that it reduced the conservation equations to a one-dimensional boundary value
problem [10]. The utility of the in�nite potential �ow was limited since it did not conform
to the wall boundary conditions at the exit planes of real geometries with �nite separations
and exit widths and Reference [30] proposed ‘plug �ow’ boundary conditions, where uniform
axial velocity and zero radial velocity were assumed at the nozzle exits. The present inviscid
results provide a more complete pattern of results including pro�les of strain rate.
Measurements of axial velocities in laminar �ows with a laser-Doppler-anemometer [1]

showed that they were closer to one-dimensional numerical calculations with plug �ow bound-
ary conditions than with the in�nite potential �ow. A simple empirical expression for the strain
rate at the stagnation plane, based on numerical simulations with plug �ow boundary condi-
tions, was then proposed in terms of the bulk velocities and nozzle separation (2Ub=H for
symmetric nozzles and often called the bulk strain rate) and this was used in a wide range
of opposed �ows ranging from inviscid to turbulent. Limitations of the plug �ow boundary
conditions with nozzles at smaller separations were noted in laminar �ows and numerical
calculations of velocity along the axis overestimated measured values by a factor of slightly
less than two. Planar visualizations of the laminar velocity �eld between opposed nozzles
with 1:0 D separation [31] implied a minimum at the axis in the exit plane, with peaks away
from it. Experiments with opposed pipes and laminar �ows [3, 14] with separations of 2.0
and 1:0 D, respectively, also showed a change in the exit velocity pro�le at the smaller sep-
aration. The boundary layer thickness and the axial velocity at the centre of the exit plane
were reduced, resulting in overestimated strain rates at the stagnation point.
With turbulent opposed �ows, measured strain rates at the stagnation point [32] were lower

than expected from the one-dimensional numerical calculations of [1] with plug �ow boundary
conditions, and this led to a modi�ed empirical version of the bulk strain rate formula [33].
These �ndings may be linked to those of Gao et al. [9] and Massot et al. [11] that quantitative
agreement between one-dimensional models and measurements required exit-plane boundary
conditions and Frouzakis et al. [10] reported that one-dimensional calculations agreed with
two-dimensional solutions only for separations of at least 1:0 D. The measurements of Rolon
et al. [31] were extended in Reference [25] to demonstrate a peak in the pro�le of static
pressure at the axis responsible for the minimum in the exit velocity, and consequent peaks
in the pro�les of strain rate at the stagnation plane of opposed nozzles with separations of
1:0 D or less and, in a subsequent contribution, the importance of local strain rates for local
quenching and extinction was highlighted [26].
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There are many turbulence models, see for example Reference [34], and it is clear that in-
creasing complexity implies added cost. The simplest and cheapest are the one-equation mixing
length models that have been very successful in the prediction of two-dimensional turbulent
�ows, e.g. see References [35, 36] and the review by Rodi [37], but it is well known that these
models are limited since they take no account of transport of turbulence. Two-equation models
such as that based on the transport of turbulent kinetic energy and dissipation rate overcome
this limitation but the Boussinesq approximation remains, together with the assumption of gra-
dient di�usive transport of k and �, and calculations in a similar impinging jet geometry, with
a wall-to-pipe separation of two diameters by Dianat et al. [18] showed that the k–� model
of Jones and Launder [15] tended to over-predict the turbulence intensity along the stagnation
streamline by up to a factor of 4. The calculations of Craft et al. [17] used the k–� model
of Jones and Launder [15] to show that the turbulence intensities of Cooper et al. [38] were
over-predicted by a factor of 6 along the impingement region adjacent to the wall when the
wall-to-pipe separation was two diameters. The inaccuracies of the k–� model were attributed
to the inadequacy of the linear stress–strain relationship in regions of �ow stagnation and cur-
vature and this was supported by further calculations by Craft et al. [39] using an alternative
non-linear cubic constitutive relation between Reynolds stress and strain rate that reproduced
measured turbulence intensities across the impingement region to within 30%. In contrast to
the �ndings in impinging �ows, Reference [19] showed that the Jones and Launder model
was able to reproduce distributions of the axial component of rms velocity along the stagna-
tion streamline of opposed pipe �ows to within 10% of the measurements of Mastorakos [4]
with a separation 0:8 D. Jones [40] suggested the di�erent �ndings in impinging and opposed
�ows was likely to be a consequence of the di�erent boundary conditions at the stagnation
plane.
The limitations of the Boussinesq assumption may be overcome, at least in part, by solving

six separate equations for the transport of Reynolds stresses, as in Reference [18], where a
second-moment Reynolds stress and �rst-moment k–� models showed that the former repro-
duced measured distributions of rms velocity �uctuations along the axis of opposed �ows
to within 5%, much better than the factor of 4 overestimate reported with the �rst-moment
closure. Similar comparisons in Reference [17] showed that agreement with measurements
was within 15% along the impingement region adjacent to the wall and, again, far better than
with their �rst-moment model. The second-moment calculations of Korusoy and Whitelaw [25]
reproduced rms velocity �uctuations measured along the axis of opposed jets by Mastorakos
[4] to within 10% showing that this was equivalent to the accuracy achieved with �rst-moment
equations [19].
The di�culties presented by turbulent combustion models were reviewed in References

[41, 42] and were evident in the series of paper [43–46] and in Reference [24]. These au-
thors showed that �nite step chemistry of a limited number of chemical species had to be
assumed as an approximation to reduce computational cost, often with the consequence that
extinction was not adequately represented. It was also evident that combustion implied fur-
ther complications for the associated aerodynamic calculations that had to be capable of
representing the e�ects of density �uctuations and it was argued that Reynolds stress trans-
port assumptions involving gradient di�usion were inadequate in reacting �ows. Reference
[41] highlighted the importance of additional source terms in the turbulence equations to
describe �ame-generated turbulence, for example due to perpendicular pressure and density
gradients.
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A commercial code and a desktop computer were used here to determine the extent to
which numerical solutions of two-dimensional forms of the equations representing conserva-
tion of mass and momentum can reproduce the isothermal-�ow measurements of Korusoy and
Whitelaw [25]. Numerical experiments were performed to determine the in�uence of distri-
butions of nodes, and subsequently to quantify pressures and velocities in the exit planes of
the two jets with boundary conditions assumed upstream and to determine the consequences
of the assumption. The e�ect of upstream boundary conditions on pro�les of strain rate at
the stagnation plane was determined, including those appropriate to pipes and nozzles with
inviscid, laminar or turbulent �ows over a range of separations. Thus, the inviscid plug �ow
model was generalized to determine the extent to which an inlet boundary condition applied a
�nite distance upstream of the jet exit was able to describe non-uniformities downstream with
comparisons to the laminar �ow calculations. Turbulent �ow calculations were compared with
the measurements to determine the consequences of pipes and nozzles for strain rates and
the relative merits of the turbulence models of Jones and Launder [15], Chen and Kim [47]
and Yakhot et al. [48]. The �rst-moment models were chosen because of their low cost and
widespread use in past literature and to provide a basis for future studies with second-moment
closures and combustion and their application to the determination of strain rates as a function
of separation is new.
The equations and boundary conditions necessary for their solution together with the nu-

merical procedures used are stated in the following two sections. Section 3 considers the
relationship between the grid and numerical di�usion and results are presented and discussed
in Section 4. The paper ends with summary conclusions and recommendations for further
work.

2. EQUATIONS AND BOUNDARY CONDITIONS

2.1. Continuity and transport

In steady two-dimensional isothermal and inviscid �ows, the coe�cients of viscosity are zero
and there is no turbulence so that all components of the stress tensor are zero. Thus, the
time-averaged equations without buoyancy or compressibility are
Continuity for all incompressible �ows:
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Transport of z component of momentum for inviscid �ow:
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where the cylindrical polar co-ordinate system is de�ned in Figure 1(a) with z the perpen-
dicular distance from the stagnation plane, r the radial distance from the axis of symmetry,
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Figure 1. (a) Orientation and origin of the cylindrical polar co-ordinate system, dimensions of solution
domain (shaded) and boundary conditions; and (b) �nite volume representation of the solution domain.

U the mean axial velocity away from the stagnation plane and V is the mean radial velocity
away from the axis.
Laminar �ows have the same continuity equation but additional viscous stress terms mean

the momentum conservation equations become
Transport of r component of momentum for laminar �ow:
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Transport of z component of momentum for laminar �ow:
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with the same assumptions of time averaging, no compressibility or buoyancy and the same
cylindrical co-ordinate system.
The k–� models used here for turbulent �ows involved the well-known Boussinesq

approximation that the Reynolds stress tensor is directly proportional to the strain rate tensor
with the constant of proportionality equal to the eddy viscosity, as discussed by Jones and
Whitelaw [15] who pointed out its shortcomings in regions of �ow curvature or stagnation
where turbulence is anisotropic and stated that such models should be used with the caveat
that a loss of accuracy may occur.
Thus, the continuity equation is again unaltered and the momentum conservation equations

become
Transport of r component of momentum for turbulent �ow:
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Transport of z component of momentum for turbulent �ow:
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Table I. Constants for Jones and Launder model.

C� �k �� C�1 C�2 K

0.090 1.000 1.300 2.000 1.550 0.410

Table II. Constants for Chen and Kim model.

C� �k �� C�1 C�2 K

0.090 0.750 1.150 1.900 1.150 0.415

Table III. Constants for renormalization group model.

C� �k �� C�1 C�2 K n0 �

0.085 0.719 0.719 1.680 1.420 0.400 4.380 0.012

where the eddy-viscosity, �t , can be determined from physical and dimensional arguments as

�t =C�
�k2

�
(8)

with values for the constant, C�, as suggested by the authors of the models and listed for
reference in Tables I–III. It should be noted that Equation (8) assumes the rates of production
and dissipation of turbulence are at equilibrium and, as with the Boussinesq relation, this is
incorrect in regions of �ow curvature or stagnation adding to the possibility of inaccuracies.

2.2. The Jones and Launder [15] model

This k–� model is the most common in general literature and has been developed extensively
to include the e�ects of buoyancy, as in Reference [42] and compressibility, as in Reference
[49]. It has been described by many authors and has come to be regarded as a ‘standard’
�rst-moment closure, as noted in Reference [17]. Thus, the transport and production equation
for turbulent kinetic energy using the same cylindrical polar co-ordinate system in a steady
incompressible �ow is
Transport equation for k:
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and the shorthand Cartesian notation SijSij will be used in place of the explicit expression
above for the remainder of this text. The term on the left-hand side of Equation (9) describes
the convective transport of k while the �rst two terms on the right-hand side represent its
gradient di�usion and the di�usivity of turbulent energy is related to the turbulent viscosity
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by the dimensionless empirical number �k in Table I. The last two terms on the right-hand
side of Equation (9) represent viscous dissipation of turbulent energy and its generation by
shear stresses, respectively.
Finally, closure is achieved with the transport equation for viscous dissipation,
Transport equation for �, Jones and Launder model:
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where the term on the left-hand side and the �rst two terms on the right-hand side of Equa-
tion (10) are analogous to the k transport equation and represent convective and di�usive
transport of dissipation, this time with the dimensionless empirical number ��, Table I. The
last two terms on the right-hand side of Equation (10) represent the destruction and production
of � and are directly proportional to the two terms on the right-hand side of Equation (9),
describing destruction and production of k, where a factor of �=k has been included to ensure
dimensional consistency. The physical basis for the assumed proportionality comes from the
condition that turbulent energy can never be negative or diverge, so the rate of energy dissi-
pation must be similar to the rate of production together with the condition �k¡�� and the
two proportionality constants, C�1 and C�2, are given in Table I.
It is known that the Jones and Launder model generally leads to overestimates of the rms

velocity �uctuations in regions of stagnation, for example Reference [18] showed that the rms
was a factor of up to four times greater than measurements along the stagnation streamline of
an impinging jet, and this implies the rate of production of � is greater than that suggested by
the last term on the right-hand side of Equation (10). This has led to a number of proposed
modi�cations to the � equation and two of the more common versions are described in the
following two subsections.

2.2.1. The Chen and Kim [47] model. This model was devised to improve accuracy in pre-
dicting stagnating �ows with the justi�cation that an additional production timescale might be
used to allow the energy transfer mechanism of turbulence to respond to the mean strain rate
more e�ectively. This leads to the modi�ed � equation
Modi�ed � equation of Chen and Kim:
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where the values of the empirical coe�cients, C�1 and C�2, proposed by Chen and Kim to give
the best �t to data are given in Table II. The last term on the right-hand side of Equation (11)
is new, contains the production timescale and marks the di�erence between the Chen and Kim
and the Jones and Launder model.
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2.2.2. The renormalization group (RNG) model. Yakhot and Orszag [48] suggested
renormalization group analysis was a more rigorous and fundamental approach to the k–�
equations than the derivations outlined above and showed that a set of values for the coef-
�cients may be determined analytically. The model implemented here conformed to that of
Yakhot et al. [50] where the k equation was the same as that by Jones and Launder, but the
� equation was modi�ed by an additional term that attempts to represent the increase in � in
regions of �ow curvature or stagnation. Thus, the modi�ed � equation is
Modi�ed � equation of Yakhot et al.
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where n ≡ (k=�)√2SijSij. Values for the empirical coe�cients n0 and � were suggested and are
given in Table III, together with the analytically derived values of the remaining coe�cients.
The di�erence between the RNG and Jones and Launder models is given by the additional
last term on the right-hand side of Equation (12).

2.3. Boundary conditions

Figure 1 indicates the six types of boundary conditions, namely inlet, wall, symmetry plane,
constant pressure, symmetry axis and zero azimuthal �ow, and the position of the boundaries.
A uniform inlet velocity pro�le equal to the bulk velocity was assumed for all inviscid �ows
while those with �nite viscosity had to satisfy the zero slip condition at the point between
the inlet and wall boundaries and, in turbulent �ows, the well-known log-law of the wall was
used.
Thus, in laminar nozzle �ows that were undeveloped the inlet velocity pro�le increased

sharply from zero at the wall to the bulk value one node away from it while a fully devel-
oped parabolic pro�le, U =2(r2=R2−1)Ub, was used for laminar pipe �ow. In turbulent nozzle
�ows, provision was made within the computational procedure so that the grid node neigh-
bouring the wall was within the range 30¡y+¡500 where y+ =�uty=� and ut =(�w=�)1=2

and �w is wall shear stress. In terms of the dimensionless parameter u+ = u=ut , the velocity
pro�le in the region next to the wall, y+6y+m , was assumed to be u

+ =y+ and the pro�le
was u+ =Ln(9y+)=K in the region y+¿y+m , and the value of y

+
m was chosen to satisfy the

relation y+m =Ln(9y
+
m)=K to prevent any discontinuities. The value of k at grid nodes neigh-

bouring the wall was obtained from the transport equation while the dissipation was set to its
equilibrium value, �= u3t =Ky, in order to prevent divergence that otherwise occurred. Away
from the �rst grid node and towards the axis of the inlet the velocity increased sharply to
the bulk value in the case of turbulent nozzle �ow, while it followed the seventh power law
U =9(r7=R7 − 1)Ub=8 for fully developed turbulent pipe �ows. In all cases, inlet values of
turbulence intensity and length scale were set to 12% and 4 mm in accordance with past
measurements.
The axial velocity and all axial gradients of the other variables were zero at the symmetry

plane so that U =0; dV=dz=dP=dz=dk=dz=d�=dz=0. A constant pressure equal to the
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atmospheric value (1 bar, 105 Pa) was applied at the pressure boundaries so that P=Patm =
105 Pa and the gradients of all variables normal to the pressure boundary were set equal to
zero, i.e. dU=dz=dV=dz=dk=dz=d�=dz=0 at the pressure boundary parallel to the stagnation
plane while dU=dr=dV=dr=dk=dr=d�=dr=0 at the pressure boundary parallel to the axis.
The mean radial velocity was zero at the axis of symmetry so that V =0, while the

radial gradients of all other variables were zero, i.e. dP=dr=dU=dr=dk=dr=d�=dr=0. Zero
azimuthal �ow boundaries were also indicated in Figure 1 so that d=d�=0.

3. NUMERICAL PROCEDURE AND UNCERTAINTIES

The computations were carried out using a computer (INTEL 800 MHz, 256 MB) to 64-
bit precision in conjunction with available software (STAR-CD, Absoft FORTRAN). The
convergence times for calculations with two operating systems (LINUX, WINDOWS 2000)
were compared and those with the LINUX system were typically between 15 and 20% faster,
requiring around 48h of CPU time per run depending on the mesh density and dimensions, and
it was used for the subsequent calculations in this paper. The equations were discretized and
solved using the �nite volume method in conjunction with the SIMPLE algorithm as explained
by many authors including Versteeg and Malalasekera [51], Patankar [52] and Ferziger and
Peric [53]. The conjugate gradient method was the iterative diagonalization procedure of
Kershaw [54], and it was implemented in FORTRAN.
The QUICK di�erencing scheme was used together with a distributed grid that was re�ned

in regions of high gradients to ensure that Peclet numbers were below 2.7 and this allowed
smooth convergence of the third-order numerics as well as reducing the e�ects of numerical
di�usion. Convergence was assumed after 5000 iterations at which the fractional change in
the values of all quantities averaged over the entire solution domain reduced by at least four
orders of magnitude and further iterations had no e�ect on the �nal solution. Although an
expression for the e�ective numerical di�usivity for two-dimensional problems using �rst-
order numerics was given by (de Vahl Davis and Mallinson) [55], no such expression exists
for higher order schemes where the e�ects of numerical di�usion are expected to be smaller.

3.1. Grid tests

The pressure boundaries were initially set at a radial distance of 5:0 D from the axis and
2:5 D from the stagnation plane, i.e. Lout = 5:0 D and Lpres = 2:5 D as in Figure 1(a), and
the inlet boundary was located 2:0 D upstream of the nozzle exit, Lin = 2:0 D. The conse-
quences of the position of the boundaries, particularly the inlet boundary, were examined with
results summarized in the following subsection. A bulk velocity of 3:3m=s, corresponding to a
Reynolds number based on exit diameter of 5500, was chosen to allow equivalent grid tests in
laminar and turbulent �ows. The nozzle separation of 1:0 D implied that the grid nodes were
distributed over a rectangular solution domain of axial dimension 2:5 D and radial dimension
5:0 D. Four successively re�ned uniform grids: 30× 60; 60× 120; 125× 250 and 250× 500
were examined together with one redistributed grid with 6785 nodes to provide the highest
resolution in regions of high velocity gradient, as discussed further below. The following
paragraphs present the results of the grid tests in laminar and turbulent �ows. Pro�les at the
exit plane were from the axis to the wall, r=0 to R where R=0:5 D, those at the axis from
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the stagnation plane to the inlet boundary, z=0:0 to 2:5 D, and those at the stagnation plane
from the axis to the pressure boundary, r=0:0 to 10:0 R.
For laminar �ow, the pro�les of all the variables varied by less than 3% close to the

axis, even with the 30× 60 mesh, and the same agreement was achieved at mesh densities of
125× 250 or greater in the region of high velocity gradient close to the wall. The need for
higher mesh densities near the wall de�ned a maximum cell dimension of 0:5mm at the wall
and 2:1 mm at the axis and guided the construction of the distributed grid using a geometric
series with an initial cell width of 0:2 mm, and successive increases of 7% to a maximum
of 1:1 mm at the axis. The distributed grid had 6785 nodes, 22% less than the uniform
125× 250 mesh, and often converged with at least a four-fold reduction in computational
time. The e�ects of the grid on the �ow on the axis were less than 3%, again with mesh
densities of 125× 250 and greater and with the distributed grid. The pro�les of pressure on
the stagnation plane were also a�ected by less than 3% and the radial velocities agreed to
within 1% even at the lowest mesh density, 30× 60, within 1:5 R of the axis and in the
region of interest where experimental observations in Reference [25] showed that the �ame
was stabilized and extinction eventually occurred. Higher mesh density were required at larger
radii.
For turbulent �ow, pro�les of pressure and two components of mean velocity at the nozzle

exit were within 5% of each other with all grids. Pro�les of the rms of the velocity �uctuations
and the integral length scale were within 3%. Calculated pressures along the axis varied by
less than 10% and velocities by less than 5%. Calculated pro�les of pressure and velocity at
the stagnation plane were a�ected by less than 3% and rms velocities and length scales by
less than 15%.
In summary, the distributed grid produced pro�les and distributions of all calculated quan-

tities that agreed with the two �nest uniform meshes and convergence was achieved in one
quarter of the time so that the distributed grid was used throughout the rest of the calculations
in this paper.

3.2. Assessment of boundary condition assumptions

The axial and radial distances from the stagnation plane and axis of symmetry of the two
pressure boundaries were de�ned in Figure 1(a) as Lpres + H=2 and Lout and their minimum
values, to ensure that they did not a�ect the �ow solutions, were a function of mesh density.
Coarser meshes generally required pressure boundaries further from the stagnation region and
repeated trials showed that the conditions Lout = 5:0 D and Lpres = 2:0 D were su�cient for
the range of grids tested and were adopted for all the calculations in this paper. The inlet
boundary was located 2:0 D upstream of the nozzle exit, i.e. Lin = 2:0 D in Figure 1(a), for
the grid dependence studies above and preliminary calculations of the exit �ow showed that
there was no change in calculated pro�les of pressure at the exit for values of Lin greater than
1:00 D, but smaller values increased the pressure by a factor of up to two at Lin = 0:00 D
at the axis while the pressure at the edge of the pipe wall at r=R=1:0 was reduced. A bulk
velocity of 0:645m=s was chosen for these calculations, corresponding to a Reynolds number
based on diameter of 1000, as a laminar �ow of a pipe separation of 0:2 D because they
produced the largest e�ects of Lin on the �ow.
Distributions of pressure and velocity along the axis con�rmed that any choice of

Lin¡1:00 D resulted in an increase of the pressures and velocities along the stagnation stream-
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line, by a factor of up to 2, while pressures in the stagnation plane also increased within 0:5 R
of the axis. Pro�les of radial velocity on the stagnation plane increased to a peak of up to
3:8Ub at r=R=1:0 with Lin = 0:00 D and the peak was at r=R=1:2 with larger values of Lin
where the amplitude was 40% smaller.
As a consequence of the above, Lin = 2:0 D was used for the remaining calculations in this

paper.

4. RESULTS

The results are presented in three subsections dealing with inviscid, laminar and turbulent �ows
respectively and each describing the �ow at the exit, along the axis and at the stagnation plane.
The brief subsection on inviscid �ows showed the extent to which an inviscid inlet boundary,
applied 2 D upstream of the exit, was able to reproduce the non-uniformities downstream that
were evident in the viscous �ows where viscosity was a perturbation. The Reynolds number
is important in laminar �ows, except in regions where similar solutions may exist such as
far downstream in the radial jet of the opposed �ow and, since it is unlikely that a similarity
parameter can characterize the impingement region where non-uniformities exist, calculations
are reported for four Reynolds numbers ranging from 170 to 2500. Thus, the e�ects of bulk
velocity, nozzle separation and pipe or nozzle boundary conditions are discussed respectively
for laminar and turbulent �ows and are compared qualitatively with past measurements and
quantitatively with those at the exit and stagnation planes from Korusoy and Whitelaw [25].
The results of the Jones and Launder, Chen and Kim, and RNG turbulence models, discussed
above, are also compared with measurements to assess accuracy and possible bene�ts of the
latter two models at the stagnation plane. The emphasis is, however on the calculations of
local strain rate and their implications. All static pressures are normalized by the bulk dynamic
pressure, 0:5�U 2

b .

4.1. Inviscid �ow

Figures 2–4 show inviscid-�ow normalized pressures and velocity in the exit plane, along the
axis and on the stagnation plane for a bulk velocity of 0:645m=s and as a function of nozzle
separation, and Figure 5 shows the strain rates on the stagnation plane.
The exit-plane pressures of Figure 2(a) increased to 36�U 2

b close to the axis as the separa-
tion reduced to 0:2 D and reached that of the surroundings at r=1:0 R. The axial velocities
of Figure 2(b) show a constant region near the axis with a peak at 1:0 R where there was a
�nite slip-velocity at the wall and no boundary layer. The axial velocity at the peak increased
from 1.0 to 3:0Ub as the separation was reduced from 2.0 to 0:2 D and the minimum at the
axis fell from 1.0 to 0.3 Ub. The pro�les of radial velocity, Figure 2(c), show increasing
�ow from the axis with smaller separations, as expected from continuity, and the peak in
radial velocity moved towards the wall until it reached 0.92 R at the separation of 0:2 D
where its amplitude was 0.98 Ub. Thus, the solution of the inviscid �ow equations exhibited
non-uniformities at the exit with separations of 1:0 D or less, in common with experiments.
The distribution of normalized pressure along the axis, Figure 3(a), has a constant region

upstream and a peak at the stagnation point. The pressure in the constant region increased
from near zero to 8 �U 2

b as the nozzle separation was reduced from 2.0 to 0:2 D while the
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Figure 2. Pro�les of normalized pressure and velocity at the exit as
a function of H=D: (a) pressure; (b) axial velocity; and (c) radial
velocity. Inviscid �ow, Ub = 0:645 m=s ◦ (0:20); � (0:40); * (0.6)

+ (0.80); (1.0); − (1.5) � (2.0).

stagnation pressure increased from 0.5 to 8.5 �U 2
b . Thus, the distribution of axial velocity was

also constant upstream of the exit plane, at Ub, and reduced to zero at the stagnation point.
It is evident from Figure 3(b), that the axial velocity gradient and hence the strain rate at the
stagnation point increased non-linearly from 50 to 97=s with separation from 2.0 to 0:2 D at
the bulk velocity of 0:645m=s. The commonly used bulk strain rate formula, 2Ub=H , produced
values that increased from 52 to 516=s, with the same range of separation. The bulk strain
rate increasingly overestimated the local strain rate at the stagnation point, to a factor of up
to 3.8 as the separation of 0:2D, because the assumption of uniform conditions upstream was
increasingly invalid as the separation was reduced.
Pro�les of pressure at the stagnation plane, Figure 4(a), have a peak at the stagnation

point equal to the stagnation pressure and became broader and the pressure increased as the
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Figure 3. Distributions of normalized pressure and velocity
along the axis as a function of H=D: (a) pressure; and (b) ax-
ial velocity. Ub = 0:645 m=s, Inviscid �ow ◦ (0.20); � (0.40);

* (0.6) + (0.80); (1.0); − (1.5) � (2.0).
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Figure 4. Pro�les of normalized pressure and velocity on the
stagnation plane as a function of H=D: (a) pressure; and (b) ax-
ial velocity. Ub = 0:645 m=s, Inviscid �ow ◦ (0.20); � (0.40);

* (0.6) + (0.80); (1.0); − (1.5) � (2.0).

separation was reduced from 2.0 to 0:2 D. The pressure decreased with radial distance from
the axis until it was equal to the surroundings at a radius that increased from 1.3 to 2.0
R with the same reduction in separation. Thus, the corresponding pro�les of radial velocity,
Figure 4(b), increased from zero at the axis to a peak at radii that increased from 1.3 to
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Figure 5. Pro�les of radial strain rate on the stagnation plane as a function of H=D. Ub = 0:645 m=s,
Inviscid �ow ◦ (0.20); � (0.40); * (0.6) + (0.80); (1.0); − (1.5) � (2.0).

2.0 R as the separation was reduced from 0.2 to 2:0 D and this also led to an increase in
peak radial velocity, from 1.0 to 4.1 Ub, as expected from the increase in stagnation pressure.
The decay in radial velocity after the peak, was due to continuity as the �ow spread into the
surroundings.
Continuity required the magnitude of the axial and radial components of strain rate to

be equal at the stagnation plane and pro�les of radial strain rate are presented in Figure 5.
The minimum strain rate occurred at the axis and reached a maximum at a radial distance
that decreased to 1.0 R as the separation was reduced to 0:2 D. The position of the peak
in strain rate was increasingly di�cult to determine with increasing separation because of
the reduction in its amplitude. The results at smaller separations suggest that the maximum
in radial velocity was approximately twice as far from the axis as the maximum in radial
strain rate. The minimum strain rate at the axis increased from 50 to 97=s as the nozzle
separation was reduced from 2.0 to 0:2 D while the maximum values increased from 65
to 665=s, suggesting that there was still a slight peak in strain rate even at the separation
of 2:0 D. The strain rates at the peak and axis as a function of separation are summarized
in Table IV at the bulk velocity of 0:645 m=s and values at other bulk velocities may be
obtained by linear extrapolation. Again, the trends are similar to those of the experiments of
Korusoy and Whitelaw [25].

4.2. Laminar �ow

Figures 6–9 present results for laminar �ow with the �rst two showing the e�ects of Reynolds
number and nozzle separation on pressure and velocities on the exit and stagnation planes and
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Table IV. Strain rate on the axis of the symmetry plane
and the peak value as a function of H=D with inviscid

�ow, Ub = 0:645=s.

H=D Saxis (s−1) Speak (s−1)

2.0 50 65
1.5 53 69
1.0 62 85
0.8 69 101
0.6 78 135
0.4 88 224
0.2 97 665

the second two concerned with strain rate pro�les on the stagnation plane and, in the case of
Figure 9, with the di�erences caused by opposed nozzles and pipes.
The pressure across the exit planes of the opposed nozzles, Figure 6(a), was equal to that

of the surroundings at all bulk velocities when the separation was 2:0 D, and this implies that
a stagnation plane 1:0 D downstream had no e�ect on the �ow at the exit. The normalized
pressure increased with reduction in nozzle separation and there was also a small increase
with bulk velocity. Pressures at the axis ranged from 7 to 8 �U 2

b as the bulk velocity increased
from 0.1 to 1:5m=s, corresponding to Reynolds numbers from 170 to 2500. Comparison with
the inviscid �ow calculations revealed values up to 5% greater with viscous laminar �ow and
that the former reproduced the trend that pressure increased with reduction in separation.
E�ects of pipe or nozzle upstream boundary conditions are evident in Figure 7(a), at the

Reynolds number of 1000 and over a range of separations from 0.2 to 2:0 D, where the
pressure at the exit of the nozzle was generally smaller than that of the pipe, particularly
towards the wall where di�erences in boundary layer thickness are expected. They were small
for nozzle or pipe separations greater than 1:0 D but increased with reduction in separation
until the static pressures at the axis were 7.5 �U 2

b and 8.0 �U
2
b for a nozzle and pipe at the

smallest separation of 0:2 D. These results suggest that the stagnation plane had an increasing
in�uence on the �ow at the exit as the separation was reduced below 1:0 D.
It is apparent from pro�les of axial velocity in Figure 6(b) that the boundary layer thickness

decreased from 0.67 to 0.17 R at the separation of 2:0 D, as the Reynolds number increased
from 270 to 2500, and that the position of the peak in the pro�le of axial velocity at the
separation of 0:2 D was away from the wall by a distance that decreased from 0.04 to 0.01
R. Viscous friction reduced the peak in axial velocity by up to 30%. The axial velocity on
the axis of the nozzle exit decreased from 1.19 to 0.38 Ub with reduction in separation from
2.0 to 0:2 D, Figure 7(b), and there was a minimum at the axis with separations less than
1:0 D. In contrast, the velocity on the axis of the pipe was about twice that of the nozzle
and had a broad peak at the axis at all separations. All velocity pro�les exhibited a peak of
increasing amplitude close to the wall as the nozzle separation was reduced below 1:0 D and
the amplitude of the peak was about 20% greater for the nozzles as a consequence of the
minimum at the axis and continuity.
There was almost no radial �ow at the nozzle separation of 2:0 D, Figure 6(c), while

the favourable radial pressure gradient led to strong radial �ow from the axis with smaller
separations and �ow angles were up to 45◦ at 0:2 D. The increase in boundary layer thick-
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Figure 6. Pro�les of pressure and velocity on the exit and stagnation planes as a function of Ub for two
nozzle separations: (a) pressure at the exit; (b) axial velocity at the exit; (c) radial velocity at the exit;
and (d) radial velocity at the stagnation plane. H=D=0:2; ◦ (0:100m=s); © (0:645m=s); • (1:000m=s);• (1:500 m=s); H=D=2:0; � (0:100 m=s); (0:645 m=s); N (1:000 m=s); ∗ (1:500 m=s). Velocities

correspond to laminar �ow with Reynolds numbers of 170, 1000, 1700, 2500.

ness at low Reynolds numbers meant that the �ow was increasingly distributed towards the
axis and continuity required a larger normalized radial �ow to achieve the minimum in the
axial velocity in Figure 6(b). This explained the increase in normalized radial velocity with
reduction in Reynolds number in Figure 6(c). It is evident that the radial velocities in the
inviscid �ow were only 3% greater than that of laminar nozzles at the separation of 0:2 D.
A reduction in nozzle or pipe separation led to increasing radial �ow, Figure 7(c), due to the
increase in radial pressure gradient in Figure 7(a) and as required by continuity to allow the
minimum in axial �ow in Figure 7(b). The radial velocity at the exit of the pipe was greater
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Figure 7. Pro�les of pressure and velocity on the exit and stagnation planes as a function of H=D:
(a) pressure at the exit; (b) axial velocity at the exit; (c) radial velocity at the exit; and (d) radial velocity
at the stagnation plane. Ub = 0:645m=s, Re=1000, Laminar �ow. Nozzle: ◦ (0:20); � (0:40); + (0.80);

× (1:14) � (2:00). Pipe: • (0:20); � (0:40); + (0.80); × (1:14) N (2:00).

than that of the nozzle, by a factor of up to two towards the wall as a consequence of the
larger radial pressure gradient.
Distributions of normalized pressure along the axis of opposed nozzles were qualitatively

similar at all bulk velocities and separations with a peak at the stagnation point followed by a
decay to a minimum upstream of the exit followed by an increase towards the inlet boundary.
The pressure at all points along the axis scaled with bulk velocity in the same way as the
pressure at the axis of the exit plane described above. The stagnation pressure increased from
7.5 to 8.0 �U 2

b , while corresponding pressures at the minimum increased from 6.5 to 7.5 �U 2
b
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Figure 8. Pro�les of radial strain rate on the stagnation plane as a function of Ub. H=D=0:2:
◦ (0:100 m=s); © (0:645 m=s); • (1:000 m=s); • (1:500 m=s). Velocities correspond to laminar �ow

with Reynolds numbers of 170, 1000, 1700, 2500.

and those at inlet boundary increased from 7.0 to 7.5 �U 2
b , as the bulk velocity increased from

0.1 to 1:5 m=s, corresponding to Reynolds numbers from 170 to 2500, at the pipe separation
of 0:2 D. The position of the minimum was una�ected by bulk velocity but moved further
from the stagnation plane, from 0.5 to 1:0 D, as the separation increased from 0.2 to 2:0 D
and the same increase in separation reduced all pressures along the distribution to less than
1.5 �U 2

b . The pressures along the axis of opposed pipes were simpler than those of nozzles,
and had a similar peak at the stagnation point followed by decay to a constant value upstream
of the exit, and the shape of the distributions was similar to that of the inviscid �ows except
that the inviscid stagnation pressure was 8% higher. The pressures along the axis of opposed
pipes were generally greater, by up to 25%, than with nozzles so that the stagnation pressure
increased from 2 to 8 �U 2

b while the value upstream increased from 0 to 6 �U 2
b as the pipe

separation was decreased from 2.0 to 0:2 D at the bulk velocity of 0:645m=s. The distributions
of pressure along the axis of opposed pipes scaled with bulk velocity in the same way as the
nozzle �ows above.
The axial strain rate at the stagnation point increased from 23 to 246=s as the bulk velocity

increased from 0.1 to 1:5 m=s with the nozzle separation of 0:2 D. The strain rate reduced
with increasing nozzle or pipe separation from 0.2 to 2:0 D and values ranged from 99 to
60=s for nozzles at the bulk velocity of 0:645m=s, and a much smaller reduction from 269 to
254=s for opposed pipes. The inviscid �ow calculations produced axial strain rates that were
generally 30% greater than the laminar �ow calculations.
These results show that the e�ect of separation on strain rates was much greater for opposed

nozzles than pipes and highlights the importance of upstream conditions and the inadequacy of
the bulk strain rate formula, 2Ub=H, which produced equal strain rates for pipes and nozzles
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Figure 9. Pro�les of radial strain rate on the stagnation plane for a nozzle and a pipe at two separations.
Ub = 0:645 m=s, Re=1000, laminar �ow. Nozzle: ◦ (0:20); � (2:00). Pipe: • (0:20); N (2:00).

ranging from 52 to 516=s, and increasingly overestimated local values by a factor of up to 5
for nozzles and 2 for pipes towards the smallest separation of 0:2 D.
Pro�les of pressure on the stagnation plane had a peak equal to the stagnation pressure and

decreased with distance from the axis until it was equal to that of the surroundings at radii
greater than 2 R and the shape was qualitatively similar to those of the inviscid �ows with
which a reduction in separation broadened the peak. The decay in pressure was faster with
opposed pipes than nozzles due to the greater stagnation pressure. Pro�les of radial velocity
at the stagnation plane, Figure 6(d), increased from zero at the axis to a peak, beyond which
entrainment and continuity led to a reduction. The peak moved, from 1.3 to 1.4 R as the
Reynolds number increased from 170 to 2500, at the nozzle separation of 0.2 D. It is also
evident in Figure 7(d) that an increase in nozzle separation from 0.2 to 2.0 D moved the
peak from 1.4 to 1.9 R at the Reynolds number of 1000 and this was because the �ow was
spread over a larger area of impingement at the stagnation plane.
The stagnation plane formed the axis of a radial jet and similar solutions for the boundary

layer equations in the far �eld suggest that the radial velocity far downstream along the
stagnation pane decays according to the inverse square of the radial distance from a virtual
origin. This inverse square law was obeyed to within 1% at distances greater than 7 R from
the axis. The position of the virtual origin varied from −3:6 to −5:2 R. Continuity required
axial and radial strain rates to be of equal magnitude and the radial strain rate at the stagnation
plane of opposed nozzles with separation 0.2 D increased to a peak at 1.0 R as shown in
Figure 8. The radial strain rate increased with bulk velocity and the value at the peak increased
from 65 to 1476=s with bulk velocities from 0.1 to 1:5m=s. The peak is shown on a magni�ed
scale in Figure 9 at the two extremes of separation. It is evident that the amplitude of the
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Table V. Strain rates at the axis of the symmetry plane and the peak value as a function
of H=D for laminar and turbulent pipe and nozzle �ow.

Laminar, Ub = 0:645 m=s; Re=1000 Turbulent, Ub = 3:3 m=s; Re=5500

Nozzles Pipes Nozzles Pipes

H=D Saxis (s−1) Speak (s−1) Saxis (s−1) Speak (s−1) Saxis (s−1) Speak (s−1) Saxis (s−1) Speak (s−1)

2.0 60 91 254 — 180 230 194 233
1.0 63 95 254 — 241 319 249 302
0.8 69 107 256 — 293 409 313 399
0.4 89 207 262 — 455 937 511 935
0.2 99 612 269 501 521 2642 596 2660

peak in radial strain rate was greatly diminished, from 612 to 91=s, as the nozzle separation
increased from 0.2 to 2.0 D.
The e�ects of pipe and nozzle boundary conditions are also shown in Figure 9 where the

pro�le of radial strain rate for the opposed pipes with separation 0:2 D has a broad peak at
the axis of amplitude 269=s, rather than the minimum observed with nozzles. The amplitude
of the peak at the axis of opposed pipes was smaller than that at 1:0 R, where the strain
rate was 501=s. The strain rate at the axis of the opposed nozzles was smaller than that of
the pipes while the strain rate at 1:0 R was greater for the nozzles. Strain rates calculated in
laminar �ows were generally some 11% less than those in inviscid �ows suggesting that a
good estimate of local strain rates could be achieved without the complication of viscosity.
The strain rates at the axis and peak are summarized as a function of separation for nozzles
and pipes in Table V at the Reynolds number of 1000. Values at higher Reynolds numbers
may be estimated by linear extrapolation with the caveat that it leads to underestimation by
up to 34% at the Reynolds number of 5500.
The peak in strain rate at 1.0 R at small pipe or nozzle separations suggests that local

quenching should occur in laminar opposed �ames initially at 1.0 R from the axis with
growth of the quenched region towards the axis as the bulk velocity was increased to complete
extinction. The main di�erence between pipes and nozzles was the additional peak in strain
rate at the axis of pipes and the smaller amplitude of the peak at 1.0 R. This suggests that
quenching at 1.0 R would occur earlier in nozzles than pipes, with quenching at the axis
occurring earlier in pipes. It remains to be seen whether the latter would cause complete
extinction. Thus, the bulk velocity at which local quenching occurs for laminar �ames in
opposed nozzles with H=D of 0.2 is smaller than that of pipes, although the bulk velocity at
complete extinction may be greater.

4.3. Turbulent �ow

The calculated results for turbulent �ows are presented in Figures 10–16 and involve com-
parisons with measurements and the three turbulence models. It is of note that the turbulence
models did not a�ect values of pressure or velocity by more than 3% so that related comments
are brief.
The pressure at the exit plane of opposed �ows, Figure 10, was constant at 2:2 �U 2

b
to within 3% for bulk velocities from 0.85 to 3:40 m=s at the nozzle separation of 0:4 D,
chosen to correspond to the experiments of Korusoy and Whitelaw [25]. The calculated
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Figure 10. Pro�les of normalized mean pressure at the exit as a func-
tion of H=D. Ub = 3:3 m=s, Re=5500, turbulent �ow. Nozzles: � (0:4);
+ (0.8) (1:0); � (2:0). Pipes: � (0:4); + (0.8) � (1:0); N (2:0).

Measurements: � (0:4); + (0.8) � (1:0); N (2:0).
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Figure 11. Pro�les of normalized mean axial velocity at the exit as a function
of H=D. Ub = 3:3m=s, Re = 5500, turbulent �ow. Nozzles: ◦ (0:2) � (0:4);
(1:0); � (2:0). Pipes: • (0:2) � (0:4); � (1:0); N (2:0). Measurements:

• (0:2) � (0:4); � (1:0); N (2:0).

and measured values display similar trends and con�rm the scalability of static pressure
with U 2

b but the calculated value at the axis increased from near zero with a separation
of 2 D to 8 �U 2

b with 0:2 D, while a much smaller increase, from zero to 0.9 �U 2
b ,
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Figure 12. Pro�les of normalized axial velocity �uctuations at the exit
as a function of H=D. Ub = 3:3 m=s, Re=5500, turbulent �ow. Calcula-
tions with Jones and Launder (1972) model: Nozzles: ◦ (0:2) � (0:4);
(1:0); � (2:0). Pipes: • 0:2 � (0:4); � (1:0); N (2:0). Measurements:

• (0:2) � (0:4); � (1:0); N (2:0).
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Figure 13. Pro�les of normalized mean radial velocity on the stagnation plane as a function of H=D.
Ub = 3:3 m=s, Re=5500, turbulent �ow. Nozzles: ◦ (0:2); � (0:4); + (0.8); (1:0); � (2:0). Pipes:

• (0:2); � (0:4); + (0.8); � (1:0); N (2:0). Measurements: • (0:2); � (0:4); + (0.8); � (1:0).

was observed as the nozzle separation was reduced to 0:4 D. Corresponding values of
pressure at the exit of opposed pipes were within 3% of the nozzles. The ability of the
calculations to reproduce correct trends with bulk velocity and nozzle separation
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Figure 14. Pro�les of normalized mean radial strain rate on the stagnation plane as a function of H=D.
Ub = 3:3 m=s, Re=5500, turbulent �ow. Nozzles: ◦ (0:2); � (0:4); + (0.8); (1:0); � (2:0). Pipes:

• (0:2); � (0:4); + (0.8); � (1:0); N (2:0). Measurements: • (0:2); � (0:4); + (0.8); � (1:0).
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Figure 15. Pro�les of normalized rms velocity �uctuations on the stagnation plane as a function of
H=D. Ub = 3:3m=s; Re=5500, Jones and Launder model. Nozzles: ◦ (0:2); � (0:4); + (0.8); (1:0);
� (2:0). Pipes: • (0:2); � (0:4); + (0.8); � (1:0); N (2:0). Measurements: � (0:4); + (0.8); � (1:0).

is encouraging, although the measured pressure was overestimated by factors of up
to 2.4.
The normalized axial velocity decreased at the axis from 0.76 to 0.72, as Ub ranged from

0.85 to 3:40 m=s with the nozzle separation of 0:4 D and the same increase in bulk velocity
moved the peak closer to the wall, from 0:96 R to 0:98 R. It is evident in Figure 11 that
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Figure 16. Pro�les of normalized rms velocity �uctuations on the stagnation plane as a function of
H=D. Ub = 3:3m=s, Re=5500. RNG model: ◦ (0:2); � (2:0). Chen and Kim model: • (0:2); N (2:0).

Measurements: � (0:4); + (0.8); � (1:0).

a reduction in nozzle separation from 2.0 to 0:2 D led to a reduction in axial velocity at
the axis from 1.0 to 0:4 Ub, and that there was a maximum of increasing amplitude near
the wall with nozzle separations less than 1:0 D. The amplitude of the peak increased to
2:1 Ub as the separation was reduced to 0:2 D. The measured axial velocity close to the
axis was underestimated by up to 17% at separations greater than 1:0 D, Figure 11, and
overestimated by up to 11% towards the smallest separation of 0:2 D. Continuity meant that
the situation was reversed near the wall where measured axial velocities were overestimated
at large separations and underestimated at small ones, but the discrepancy at separations less
than 1:0 D was less than 5%. The pro�les of axial velocity at the exit of nozzles and pipes
both show a minimum at the axis and a peak near the wall and the shapes are qualitatively
similar. This is in contrast to the laminar �ows where the pipe had a broad peak at the axis,
and the largest quantitative di�erences were on the axis and at the largest separation of 2:0 D.
The radial velocity increased from zero at the axis to a peak at 0:9 R after which there

was a sharp reduction to zero at the nozzle wall and the amplitude of the peak decreased
from 0.54 to 0:49 Ub, as the bulk velocity increased from 0.85 to 3:40 m=s. The amplitude
of the peak increased from zero to Ub with nozzle separation reduced to 0:2 D and that the
value for pipes was within 3% of those of nozzles. Pro�les of radial velocity measured with
a hot wire by Korusoy and Whitelaw [25], agreed with the calculations to within 5% at radii
greater than 0:5 R at the separation of 1:0 D, but calculated values were smaller by up to
0:06 m=s towards the axis.
The rms of the velocity �uctuations at the exit showed a broad peak at the axis, compatible

with that in axial pressure gradient, followed by a minimum at 0:96 R and then a second
sharp peak of similar amplitude at the wall at 1:0 R where large velocity gradients led to shear
generated turbulence. The calculated rms velocity at the axis, normalized by bulk velocity,
remained constant at 20, 14 and 13% with the three models, as the bulk velocity increased from
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0.85 to 3:40 m=s at the nozzle separation of 0:4 D while measured values of axial and radial
rms were constant at 16 and 10%. This shows that all the models reproduced qualitatively
the proportionality between turbulence intensity and bulk velocity but the Jones and Launder
model overestimated measured values of both components of rms velocity by up to a factor
of two while the alternative models underestimated the axial component and overestimated
the radial component by up to 30%. It is possible that the hot-wire measurements involved
some recti�cation e�ects which would have had the e�ect of increasing mean and decreasing
turbulence results.
Normalized axial rms velocity �uctuations at the exit of nozzles and pipes are shown in

Figure 12 together with measured values. The values calculated with the Jones and Launder
model increased from 12 to 44% for nozzles and from 16 to 55% for pipes, as the separation
was reduced from 2.0 to 0:2 D, while measured values in nozzles increased from 8 to 20%. It
is apparent that the qualitative trends are correct but values were overestimated by a factor of 2
by the Jones and Launder model. The RNG and Chen and Kim models produced qualitatively
similar pro�les of axial rms velocity with calculated values that increased from 11 to 20%
with the RNG model and from 11 to 18% with the Chen and Kim model as the nozzle
separation was reduced by the same amount and agreement with measurements was, again,
within 30% of measured values due to the additional dissipation terms that helped reduce the
overestimate.
The integral length scale for all the models had a peak value of around 4 mm at the axis

while values were zero at the wall. The values at the axis increased from 2 to 7 mm with
the Jones and Launder model, 1 to 6mm with the RNG model and from 1 to 7mm with the
Chen and Kim model as the nozzle separation increased from 0.2 to 2:0 D. All the models
compared well with hot wire measurements by Kostiuk [33] at the separation of 2:0 D that
showed the integral length scale was expected to be 4 mm.
Distributions of mean pressure along the axis of opposed nozzles had a peak at the stag-

nation point and decreased to a minimum upstream of the nozzle exit, followed by a small
increase towards the inlet boundary. The stagnation pressure was almost directly proportional
to U 2

b with normalized values ranging from 2.80 to 2.18 �U 2
b as the bulk velocity increased

from 0.85 to 3:40 m=s at the nozzle separation of 0:4 D. The stagnation pressure increased
from near zero to 8 �U 2

b as the nozzle separation was reduced from 2.0 to 0:2 D at the bulk
velocity of 3:3m=s. Distributions of pressure along the axis of opposed pipes also had a peak
at the stagnation point where it was 12% greater than that of the nozzles, and the pressure
reduced with distance from the stagnation point towards the inlet boundary.
The normalized axial velocity along the axis of opposed nozzles increased by 16% from

the inlet boundary to a peak upstream of the exit, corresponding to the minimum in the
distribution of pressure above, followed by a reduction to zero at the stagnation point. The
axial velocity, in nozzles and pipes, was almost directly proportional to bulk velocity so that
the normalized axial velocity reduced by less than 7% as the bulk velocity was doubled. The
absence of a minimum in distributions of pressure in opposed pipes meant that there was no
corresponding peak in axial velocity. The axial velocity increased towards the inlet boundary
upstream of the pipe exit, where the fully developed boundary condition meant that it was a
factor of 1.3 greater than that of the nozzle, and it was zero at stagnation.
The axial strain rate was directly proportional to bulk velocity and increased from 180 to

521=s for nozzles and from 194 to 596=s for pipes as the separation was reduced from 2.0 to
0:2 D at the bulk velocity of 3:3m=s. Korusoy and Whitelaw [26] con�rmed the proportionality
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and measured larger values, from 230 to 1320=s, with nozzles. In contrast to laminar �ows,
reduction in separation resulted in similar increases in strain rate for pipes and nozzles.
The distributions of the rms velocity �uctuations peaked at the stagnation point and were

qualitatively similar to those measured by Kostiuk [33]. The rms velocity �uctuations were
directly proportional to bulk velocity at all points along the distribution and the proportion-
ality was expected from past measurements. Calculated values of rms at the stagnation point
increased little with separation at 55% for nozzles and from 60 to 69% with pipes as the
separation was reduced from 2.0 to 0:2 D. Values of axial rms velocity at the stagnation
point measured by Kostiuk increased from 12 to 26% while the radial rms increased from 7
to 14% as the nozzle separation was reduced from 2.00 to 0:56 D. This shows that the Jones
and Launder model overestimated rms velocities at the stagnation point by up to a factor of
4, as expected from the �ndings of Dianat et al. [18] who suggested the overestimate was
a consequence of the inadequacy of the Boussinesq constitutive relation in stagnating turbu-
lence. Both the RNG and Chen and Kim models produced much smaller values of rms that
increased from 23 to 24% as the nozzle separation decreased from 2.0 to 0:2 D. The RNG
and Chen and Kim models produced results that were closer to measurements than the Jones
and Launder model, helped by the addition terms in their dissipation equations, however the
quantitative increase in rms velocity at the stagnation plane with decrease in separation was
not reproduced correctly with any of the models and Dianat et al. [18] suggested that the
Boussinesq assumption should be abandoned if better accuracy is to be achieved.
Pro�les of pressure on the stagnation plane had a maximum and decreased to that of

the surroundings at radii greater than 2:0 R, and the peak broadened with reduction in nozzle
separation, as discussed in laminar and inviscid �ows. The radial pressure gradients for nozzles
and pipes were the same, in contrast to previous di�erences in laminar �ows.
Pro�les of radial velocity on the stagnation plane of opposed nozzles with separation 0:4 D,

again chosen to match the experiments of Korusoy and Whitelaw [25], increased from zero
at the axis to a maximum of 1:7 Ub at 1:4 R, after which entrainment and continuity caused a
reduction. The radial velocity was directly proportional to bulk velocity so that the normalized
radial velocity was constant to within 1% as the bulk velocity increased from 0.85 to 3:40m=s.
Proportionality between bulk and radial velocity was also observed in the LDV measurements
of Korusoy and Whitelaw where a slightly higher peak velocity of 1:9 Ub was observed at
the same radial position and nozzle separation. Figure 13 allows comparison of calculated
pro�les of radial velocity in opposed nozzles and pipes together with those measured with
nozzles by Korusoy and Whitelaw for a range of separations. The calculated amplitude of
the peak increased from 0.56 to 3:37 Ub and moved closer to the axis, from 1.6 to 1:2 R, as
the nozzle separation was reduced from 2.0 to 0:2 D. The di�erence in calculated pro�les of
pipes and nozzles was less than 1% at separations of less than 0:8 D while the amplitude of
the peak was up to 5% greater with nozzles at larger separations. Measured radial velocities
agreed with calculations to better than 5% within 1:1 R of the axis. The discrepancy between
calculations and measurements increased at larger radii, as discussed in relation to grids, but
outside the main range of interest of the results. It is evident from Figure 13 that pro�les of
radial velocity along the stagnation plane of pipes and nozzles did not di�er by more than
5% and this is in contrast to much larger di�erences discussed above in the laminar �ows
and due to the greater mixing associated with the turbulent �ows.
Continuity required equal axial and radial components of strain rate and those calculated

from the pro�les of radial velocity in Figure 13 are shown in Figure 14 together with measured
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values from Reference [25] with the scale expanded to show the peak at 1:0 R. The calculations
showed that the amplitude of the peak increased from 230 to 2642=s as the nozzle separation
was reduced from 2.0 to 0:2 D, while the minimum strain rate at the axis increased from
180 to 521=s, at the bulk velocity of 3:3 m=s. The measured and calculated strain rates agree
within 5% close to the axis at separations of 0.2 and 0:4 D, but the calculations overestimated
the measured values by up to 9% at the separation of 1:0 D. The uncertainties remained less
than 10% towards the peak at separations of 0.4 and 1:0 D but the calculated peak strain
rate was 20% greater at the smallest separation in Figure 14. The peak strain rate for pipes
and nozzles was the same for all the separations considered while the value at the axis of
pipes was greater than that of nozzles, by up to 12% at the smallest separation of 0:2 D. The
di�erence between pipes and nozzles decreased with increased separation until the strain rates
at the axis were near equal at 2:0 D. The strain rates are summarized in Table V.
The Jones and Launder model resulted in rms velocity �uctuations at the stagnation plane

that were directly proportional to bulk velocity and had a value of 0:6 Ub at the axis at the
separation of 0:4 D and increased to a peak value of 0:7 Ub at 1:0 R, after which there was
a reduction. Pro�les of normalized rms velocity �uctuations are presented in Figure 15 for
a range of separations from 0.2 to 2:0 D. The peaks are evident at 1:0 R with separations
of 0.2 and 0:4 D where the values of rms increased from 55 to 120% as the separation of
opposed nozzles decreased from 2.0 to 0:2 D. The measurements of radial rms velocities from
Korusoy and Whitelaw [25] con�rmed the increase with a reduction in nozzle separation but
the values at the axis ranged 10–30% as the separation reduced from 1.0 to 0:4 D and were
smaller than calculated values. The measurements also con�rmed that there was a peak in the
rms pro�les at separations of 0.2 and 0:4 D but not at 1:0 D while the position of the peak
was slightly closer to the axis, at 0:84 R, than the calculated position of 1:0 R. The �gure
indicates that rms values for pipes and nozzles were within 3%.
The Chen and Kim model produced rms values, Figure 16, that agree with measurements

to within 5% and increased from 20 to 25% at the axis while the increase at the peak at
1:0 R was from 20 to 40%. Comparison of the model equations in Section 2 shows that they
are equivalent in the limit of zero strain rate and this explains why they overestimated the
measurements by similar factors at large separations. The Chen and Kim and RNG models
have additional terms in their dissipation equations that are fourth order in strain rate so
that the dissipation increased more rapidly with reduction in separation than with the Jones
and Launder model. These additional terms were e�ective at keeping the turbulence intensity
within realistic limits in regions of stagnation and high curvature but led to an underestimate
of rms velocities at small separations.
The turbulent strain rate is expected to be high when the rms of the velocity �uctuations is

high and estimates based of the velocity gradient and the numbers in the previous paragraph
show that the peak of the rms strain rate �uctuations was at 1:0 R and was directly proportional
to bulk velocity with a value of 184=s at the bulk velocity of 3:3 m=s and nozzle separation
0:4 D. The calculations also suggest that the rms of the strain rate �uctuations at the peak
increased from 146 to 292=s, as the nozzle separation was reduced from 2.0 to 0:2 D.

5. CONCLUSIONS

Calculations of isothermal inviscid, laminar and turbulent �ows were performed successfully
with a desktop computer in conjunction with commercially available software and QUICK
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di�erencing. The use of higher order schemes required the development of an optimized grid
and was otherwise prohibitively expensive because of the need for small Peclet numbers.
Uncertainties due to numerical di�usion were expected at the exit near the wall where the
�ow curvature and velocity was greatest. Preliminary calculations quanti�ed suitable positions
for the pressure and inlet boundaries and showed that the latter must be applied more than
1:0 D upstream of the nozzle or pipe exit.
The inviscid �ow calculations reproduced qualitatively the non-uniform exit velocity pro�le

of the experiments at small separations and overestimated the peak in axial velocity by 30%
leading to an overestimate of the peak in the pro�le of mean strain rate at the stagnation
plane of 11%. The strain rates at the axis and peak of the distribution at the stagnation plane
are summarized in Tables III and IV as a function of separation for inviscid, laminar and
turbulent �ows with pipe and nozzle boundary conditions.
The existence of peaks in strain rate at 1:0 R at small nozzle separations and with laminar

�ow, suggests that local quenching of reacting �ows should occur initially in their vicinity
with growth of the quenched region towards the axis as the bulk velocity was increased to
complete extinction. As expected the strain rate increased with Reynolds number and with
reduction in separation. The main di�erence between pipes and nozzles was the additional
peak in strain rate on the axis of pipes that implies that extinction should occur from large
to small radii with small separations and the opposite at larger separations. The strain rate at
the stagnation point was overestimated by the bulk strain rate, 2Ub=H , by up to a factor of 5
for nozzles and 2 for pipes.
Measured pro�les of strain rate at the stagnation plane were reproduced by the turbulent

nozzle �ow calculations to within 10% and extended to show that di�erences between pipes
and nozzles were smaller in turbulent than laminar �ows. In both cases, the strain rate peaked
close to 1:0 R, with a minimum at the axis and slightly higher values with pipes. The increasing
amplitude of the peak in strain rate at small nozzle separations explained the occurrence of
local quenching in the experiments of Korusoy and Whitelaw [26] and the similarity with
pipes suggests that local quenching should also be observed in pipe �ows. The slightly higher
mean strain rate in pipe �ows suggests that extinction in pipes should occur at lower bulk
velocities than nozzles. The maximum strain rates are summarized in Table V.
The Jones and Launder model overestimated the rms velocity �uctuations at the stagnation

plane by a factor of up to 4 while the renormalization group and Chen and Kim models led to
similar overestimation at separations greater than 0:8 D, where strain rates were low and the
models were equivalent. The renormalization group and Chen and Kim models underestimated
rms velocities by up to 20% at the separation of 0:2 D, where strain rates were high, because
of the additional production terms in the dissipation equation that were to fourth order in the
strain rate. This means that the �rst-moment closures used here are unlikely to be appropriate
for extinction and relight calculations because they could not represent the rms of the strain
rate �uctuations. A model with production terms in both k and � equations may produce better
results, however turbulence and its e�ects are anisotropic in the stagnation plane of opposed
�ows and this implies that the Boussinesq constitutive relation and the gradient di�usion
approximations will lead to inaccuracies in numerical simulations of this region.

ACKNOWLEDGEMENTS

We are grateful to the United States O�ce of Naval Research, which supported this work under contracts
N00014-99-1-0832 and N00014-02-1-0664. Many useful discussions with Profs H McDonald, WP Jones

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1069–1098



INVISCID, LAMINAR AND TURBULENT OPPOSED FLOWS 1097

and RT Fenner are gratefully acknowledged and we are pleased to thank Dr F Nadiri and Dr D Barnes
for practical assistance with hardware and software.

REFERENCES

1. Chelliah HK, Law CK, Ueda T, Smooke MD, Williams FA. An experimental and theoretical investigation of
the dilution, pressure, and �ow-�eld e�ects on the extinction condition of methane–air–nitrogen di�usion �ames.
In Proceedings of 23rd International Symposium on Combustion, Pittsburgh, 1990; 503–511.

2. Konnov AA, Idir M, Delfau JL, Vovelle C. Experimental study of extinction of nonadiabatic counter�ow
premixed �ames. Combustion and Flame 1996; 105:308–320.

3. Pellet GL, Isaac KM, Humphreys Jr WM, Gartrell LR, Roberts WL, Dancey CL, Northam GB. Velocity
and thermal structure, and strain-induced extinction of 14 to 100% hydrogen–air counter�ow di�usion �ames.
Combustion and Flame 1998; 112:575–592.

4. Mastorakos N. Turbulent combustion in opposed jet �ows. Ph.D. Thesis, Imperial College London, U.K., 1993.
5. Sardi E. Turbulent �ame extinction in unforced and periodically forced counter�ows. Ph.D. Thesis, Imperial
College London, U.K., 1997.

6. Korusoy E. Opposed jets, �ames and extinction. Ph.D. Thesis, Imperial College London, U.K., 2002.
7. Hamins A, Trees D, Seshadri K, Chelliah HK. Extinction of nonpremixed �ames with halogenated �re
suppressants. Combustion and Flame 1994; 99:221–230.

8. Fallon GS, Chelliah HK, Linteris GT. Chemical e�ects of CF3H in extinguishing counter�ow CO/Air/H2
di�usion �ames. In Proceedings of 26th International Symposium on Combustion, Pittsburgh, 1996;
1395–1403.

9. Gao LP, D’Angelo Y, Silverman I, Gomez A, Smooke MD. Quantitative comparison of detailed numerical
computations and experiments in counter�ow spray di�usion �ames. In Proceedings of 26th International
Symposium on Combustion, Pittsburgh, 1996; 1739–1746.

10. Frouzakis CE, Lee J, Tomboulides AG, Boulouchos K. Two-dimensional direct numerical simulation of
opposed-jet hydrogen–air di�usion �ame. In Proceedings of the 27th International Symposium on Combustion,
Pittsburgh, 1998; 571–577.

11. Massot M, Manoj K, Smooke MD, Gomez A. Spray counter�ow di�usion �ames of heptane: experiments and
computations with detailed kinetics and transport. In Proceedings of the 27th International Symposium on
Combustion, Pittsburgh, 1998; 1975–1983.

12. Sung CJ, Law CK, Chen J-Y. An augmented reduced mechanism for methane oxidation with comprehensive
global parametric validation. In Proceedings of the 27th International Symposium on Combustion, Pittsburgh,
1998; 295–304.

13. Lahjaily H, Champion D, Karmed D, Bruel P. Introduction to dilution in the BML model: application to a
stagnating turbulent �ame. Combustion Science and Technology 1998; 135:153–173.

14. Zegers EJP, Williams BA, Fisher EM, Fleming JW, Sheinson RS. Suppression of nonpremixed �ames by
�uorinated ethanes and propanes. Combustion and Flame 2000; 121:471–487.

15. Jones WP, Launder BE. The prediction of laminarization with a two-equation model of turbulence. International
Journal of Heat and Mass Transfer 1972; 15:301–314.

16. Launder BE, Sharma BI. Application of the energy-dissipation model of turbulence to the calculation of �ow
near a spinning disc. Letters in Heat and Mass Transfer 1974; 1:131–138.

17. Craft TJ, Graham LJW, Launder BE. Impinging jet studies for turbulence model assessment—II. An examination
of the performance of four turbulence models. International Journal of Heat and Mass Transfer 1993; 36:
2685–2697.

18. Dianat M, Fairweather M, Jones WP. Predictions of axisymmetric and two-dimensional impinging turbulent jets.
International Journal of Heat and Fluid Flow 1996; 17:530–538.

19. Jones WP, Prasetyo Y. Probability density function modelling of premixed turbulent opposed jet �ames. In
Proceedings of the 27th International Symposium on Combustion, Pittsburgh, 1996; 275–282.

20. Champion M, Libby PA. Stagnation streamline turbulence revisited. AIAA Journal 1990; 28:1525–1526.
21. Champion M, Libby PA. Asymptotic analysis of stagnating turbulent �ows. AIAA Journal 1991; 29:16–24.
22. Champion M, Libby PA. Reynolds stress description of opposed and impinging turbulent jets; Part I: closely

spaced opposed jets. Physics of Fluids 1993; 5:203–216.
23. Champion M, Libby PA. Reynolds stress description of opposed and impinging turbulent jets. II. Axisymmetric

jets impinging on nearby walls. Physics of Fluids 1994; 6:1805–1819.
24. Lindstedt RP, V�aos EM. Modelling of premixed turbulent �ames with second moment methods. Combustion

and Flame 1999; 116:461–485.
25. Korusoy E, Whitelaw JH. Opposed jets with small separations and their implications for the extinction of

opposed �ames. Experiments in Fluids 2001; 31:111–117.
26. Korusoy E, Whitelaw JH. Extinction and relight in opposed �ames. Experiments in Fluids 2002; 33:75–89.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1069–1098



1098 E. KORUSOY AND J. H. WHITELAW

27. Leclerc A. D�eviation d’un jet liquide par une plaque normale �a son axe. La Houille Blanche 1950; 6:3–8.
28. Spalding DB. Theory of mixing and chemical reaction in the opposed-jet di�usion �ame. Journal of the

American Rocket Society 1961; 3:763–771.
29. Tsuji H. Counter�ow di�usion �ames. Progress in Energy and Combustion Science 1982; 8:93–119.
30. Seshadri K, Williams FA. Laminar �ow between parallel plates with injection of a reactant at high Reynolds

number. International Journal of Heat and Mass Transfer 1978; 21:251–253.
31. Rolon JC, Veynante D, Martin JP, Durst F. Counter jet stagnation �ows. Experiments in Fluids 1991; 11:

313–324.
32. Kostiuk LW, Bray KNC, Cheng RK. Experimental study of premixed turbulent combustion in opposed streams.

Part I—Nonreacting �ow �eld. Combustion and Flame 1993; 92:377–395.
33. Kostiuk LW. Premixed turbulent combustion in counter�owing streams. Ph.D. Thesis, Churchill College,

University of Cambridge, U.K., 1991.
34. Pope SB. Turbulent Flows. Cambridge University Press: Cambridge, U.K., 2000.
35. Cebeci T, Smith AMO. Analysis of turbulent boundary layers. Applied Mathematics and Mechanics, vol. 15.

Academic Press: New York, 1974.
36. Baldwin BS, Lomax H. Thin layer approximation and algebraic model for separated turbulent �ow. AIAA Paper

78-257, 1978.
37. Rodi W. Turbulence Models and their Application in Hydraulics—A State of the Art Review. IAHR: Delft,

The Netherlands, 1980.
38. Cooper D, Jackson DC, Launder BE, Liao GX. Impinging jet studies for turbulence model assessment—I.

Flow-�eld experiments. International Journal of Heat and Mass Transfer 1993; 36:2675–2684.
39. Craft TJ, Launder BE, Suga K. Development and application of a cubic eddy-viscosity model of turbulence.

International Journal of Heat and Fluid Flow 1996; 17:108–115.
40. Jones WP. Personal communication, 2002.
41. Jones WP, Whitelaw JH. Calculation methods for reacting turbulent �ows: a review. Combustion and Flame

1982; 48:1–26.
42. Bray KNC. Challenge of turbulent combustion. Proceedings of the 26th International Symposium on

Combustion, Pittsburgh, 1996; 1:1–26.
43. Bray KNC, Champion M, Libby PA. Premixed �ames in stagnating turbulence. Part I. The general formulation

for counter�owing streams and gradient models for turbulent transport. Combustion and Flame 1991; 84:
391–410.

44. Bray KNC, Champion M, Libby PA. Premixed �ames in stagnating turbulence. Part III. The turbulent kinetic
energy and mean viscous dissipation (Kappa–Epsilon) theory for reactants impinging on a wall. Combustion
and Flame 1992; 91:165–186.

45. Bray KNC, Champion M, Libby PA. Premixed �ames in stagnating turbulence. Part IV. A new theory for the
Reynolds stresses and Reynolds �uxes applied to impinging �ows. Combustion and Flame 2000; 120:1–18.

46. Bray KNC, Champion M, Libby PA. Premixed �ames in stagnating turbulence. Part V. Evaluation of models
for the chemical source term. Combustion and Flame 2001; 127:2023–2040.

47. Chen YS, Kim SW. Computation of turbulent �ows using an extended k–� turbulence closure model. NASA
CR-179204, 1987.

48. Yakhot V, Orszag SA. Renormalisation group analysis of turbulence—I: basic theory. Journal of Scienti�c
Computing 1986; 1:1–51.

49. El Tahry SH. K–� Equation for compressible reciprocating engine �ows. AIAA Journal of Energy 1983;
7(4):345–353.

50. Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG. Development of turbulence models for shear �ows
by a double expansion technique. Physics of Fluids 1992; A4(7):1510–1520.

51. Versteeg HK, Malalasekera W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method.
Prentice-Hall, International: Englewood Cli�s, NJ, 1995.

52. Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere: Washington, DC, 1980.
53. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Springer: Berlin, London, 1996.
54. Kershaw DS. The incomplete Cholesky conjugate gradient method for iterative solution of linear equations.

Journal of Computational Physics 1978; 26:43–65.
55. de Vahl Davis G, Mallinson GD. False di�usion in numerical �uid mechanics. Report Number 1972=FMT/1,

School of Mechanical and Industrial Engineering, University of New South Wales, Australia, 1972.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1069–1098


